Create account: (define username and password, wait for email, click link in email, check in spam folder if email not received within a few minutes) or login as guest (but then no continuity from session to session). Sign in as superuser.
Main window: Map shows location of your current simulation. Seven steps to using the system. First we run a baseline (current state of system) then a counterfactual (e.g. land use change). Link to full documentation and help system.
STEP 1: Define the area for the analysis (currently 10 degree tiles @ 1km resolution and 1 degree tiles @ 1 Ha. resolution). Move map until the tile that you want is highlighted (use the see tiled 1km and see tiled 1Ha boxes to zoom in and out). Pink tiles are 1 hectare resolution, blue tiles are 1km resolution. Then give your run a name and choose the required resolution from the dropdown menu.
STEP 2: Prepare data. Gathers and processes all of the data that you need for the baseline run and copies it to your workspace on the servers. The system may need to build the required tiles first.
STEP3: Start simulation. Takes about 6 minutes to run sophisticated hydrological baseline. If tile never been run before by anyone else can take 24 hours (because of preprocessing) but once started window or computer can be switched off. Will complete without user interaction. If long simulation then system sends email to you when done.
STEP 5: Results: maps. Access to spatial results for download in a range of grid formats (for further analysis), geobrowse (online visualisation), summary or analysis.
GEOBROWSE 1: View the data. Change colour scales. View in Google Maps/Earth. Pop out for comparison with other maps.
GEOBROWSE 2: View by area (e.g. administrative regions) instead of by pixel.
GEOBROWSE 3: Interrogate map values for a point.
GEOBROWSE 4: View in Google Earth.
GEOBROWSE 5: Define points of interest. Type coordinates (DD) individually or paste as list.
GEOBROWSE 6: Define zones of interest. According to rule specified for map
GEOBROWSE 7: Show results for areas of interest
GEOBROWSE 8: Analyse. Analyse the relationships between mapped variables.
STEP 6: Results: stats. Access to time series results for download (Excel), and online visualisation.
STEP 7: Results: narrative. A written summary of the simulation results.

This simulation is for the tile with boundaries 10.0 (N), 0.0 (E), -90.0 (S) and -70.0 (W), named colombia and run at 1-square-km resolution.

The simulation is a baseline simulation with baseline policy options and default parameters and was carried out by drmarkmulligan@gmail.com.

The main results indicate:

Water balance (mm/yr) for the area was an average 2100 with a 25th percentile of 1400 and a 75th percentile of 2400, an absolute minimum of -970 and maximum of 11000. This reflects an area average precipitation (mm/yr) of 2500 with an absolute minimum of 0 and maximum of show. Actual evapo-transpiration (mm/yr) ranges from show to show with a mean of show. Fog inputs are show in relation to precipitation at show % on average, amounting to show mm/yr on average but ranging from show to show mm/yr.

Seasonally, precipitation for the area has a maximum of show mm/month in show and show mm/month in show and a minimum of show mm/month in show and show mm/month in show. Water balance for the area (mm/month) is positive on average for show and negative for months. Actual evapo-transpiration for the area varies from a minimum of show mm/month in show to a maximum of show mm/month in show.
BACK TO STEP 4: Policy exercises. Apply a scenario for land use or climate change.
USAGE CASE: Impact of conversion of forest to pasture in ALL protected areas
USAGE CASE: Impact of conversion of forest to pasture in a specific protected area
USAGE CASE: Impact of conversion to a specific crop (rice) where suitability is high
Tree cover decreases in areas taken up by rice.

CROP: Impact of scenario on tree cover. Now run the scenario simulation.
CROP: Results have new icon for comparison with baseline
Evapotranspiration decreases in changed area.

Fog inputs decrease but not everywhere in changed area.

Overall water balance decreases but not everywhere in changed area.
Small impact on seasonal water balance on average over tile
The application of the scenario led to....
Accessing AguAAndes:
Basic system:
http://www.policysupport.org/links/aguaandes or http://goo.gl/MvyZ

Latest features:
http://www.policysupport.org/cgi-bin/ecoengine/start.cgi?project=aguaandes&usertype=superuser or http://goo.gl/C9Nt

ALL OF THE DATA AND FUNCTIONALITY SHOWN CAN BE APPLIED FOR TILES GLOBALLY NOT JUST FOR THE TILES SHOWN